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1. Introduction

Over the past decade, equity market activity has increased dramatically in
terms of both trading volume and price volatility. From one perspective, the
ability of the stock market to handle an increasing number of daily transactions
points to greater liquidity. However, the large price #uctuations that accom-
panied many of the high-volume days indicate that the market did not absorb
the additional transactions without some degree of price impact. The net e!ect
on the cost of trading is by no means obvious. Clearly neither volume nor
volatility is a direct measure of liquidity, although they are closely connected.
Beyond the bid}ask spread, few established measures of market liquidity are
available and several are measurable only cross-sectionally.

To the extent that stock market liquidity is a time-varying process, it may be
possible to forecast when the market will be most accommodative to incoming
trade activity. A tool capable of distinguishing and predicting shifts in market
depth would be particularly valuable to institutional traders conducting
high-volume trades in a particular stock. In addition, risk managers seeking
ways to measure liquidity risk should "nd the prediction of market reaction
curves useful. Not only would this present the possibility of computing
price deterioration from a known quantity of portfolio holdings, but it also
would o!er a menu of liquidation costs depending upon the unwind strategy
chosen.

This paper introduces a new, intraday statistic for market depth. Quoted
depth re#ects the number of shares that can be bought or sold at a particular bid
or o!er price. The new statistic, VNET, measures the number of shares pur-
chased minus the number of shares sold over a period when prices moved
a certain increment, and it is therefore a measure of realized depth for a speci"c
price deterioration. VNET is constructed in event-time, similar to Cho and
Frees (1988), and can be measured repeatedly throughout the trading day to
capture the short-run dynamics of market liquidity.

Motivated by the asymmetric information models in the market microstruc-
ture literature, a predictive model of intraday market depth is developed and
estimated for 17 stocks from the NYSE's TORQ data set. As anticipated, VNET
is observed to vary both over time and across stocks. The results show VNET to
be a function of the magnitude and timing of current and lagged transaction
#ows. The transactions data used to derive our measure of market depth
presumably were themselves optimized according to investor criteria. Thus, time
variation in expected VNET must be a result of agents who chose not to
completely smooth liquidity over time, such as information-based traders. The
prediction of VNET based on a valid conditioning set can only be precisely
associated with market depth under the assumption that the contemplated
trades are treated by the market in the same way that trades were treated
historically. That is, a well-known troubled hedge fund might "nd that the depth
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Fig. 1. Hypothetical market reaction curve.

available to it would be less than that forecast because the trades would be
identi"able. Conversely, an index fund might "nd greater depth than predicted.

In the next section, the liquidity concept is speci"ed, then in Section 3 the
market microstructure theory is discussed. Section 4 describes the TORQ data,
and Section 5 presents the estimation results. Section 6 tests the robustness of
these "ndings using a more current data sample, and Section 7 concludes.

2. De5ning stock market liquidity

The concept of liquidity can have a variety of interpretations. Generally, it is
the ability to transact at low cost. The divergence between buying and selling
prices, referred to as the bid-ask spread, is the most commonly cited facet of
liquidity. However, this measure only captures the tightness of the market price
for low volume trades. Larger orders almost always face worse execution } the
extent of which may be quite substantial for impatient, high-volume traders.

Fig. 1 below shows the hypothetical transaction price to be expected for
various size buying or selling orders. This schedule is often called the market
reaction curve and may depend on other features of the trades. The slope is
sometimes called Kyle's lambda after Kyle (1985). Tightness is depicted by the
degree of divergence between the buy and sell curves at the zero share line.
Another dimension of liquidity is depth, de"ned as the maximum number of
shares that can be traded at a given price. Looking at Fig. 1, the horizontal
distance between the center axis and the market reaction curve, represents the
volume that can be traded at a particular price. The posted quote depth,
represented by the #at segments near the zero share line, does not provide
a comprehensive picture of market depth. Whereas e!ective spreads are often
tighter than the posted bid}ask spread, e!ective depth may di!er from that
quoted by the market maker, as well. Regardless, quoted depth can at best
provide only a partial view of the market reaction curve.
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The slope of the reaction function away from the current quotes is important
for prospective large trader. While the market maker, termed a `specialista
on the NYSE, can independently in#uence the bid and ask prices, the shape
of the market reaction curve away from these quotes is determined for the most
part by the supply of standing limit orders. A steeper curve re#ects a shortage
of limit orders, implying a larger price impact for a given trade volume.
This represents a lack of liquidity in the market. Of course, the true market
reaction curve is not likely to be piecewise linear as illustrated in Fig. 1.
More importantly, it is not a static schedule. Over time, limit orders are
submitted, cancelled, and executed, altering the slope. This paper attempts to
uncover the factors that in#uence the short-run behavior of the price response
curve.

A natural approach to estimating the slope of the market reaction curve
would be to measure the net trade volume and corresponding price change over
a "xed interval of time. The price change per share of excess demand then
estimates of the slope of the reaction function. There are several reasons not to
follow this strategy.

Since excess demand can be positive or negative, the possibility of dividing by
a number close to zero is high and outliers are to be expected. Furthermore, the
discreteness of prices means that only a few possible values of the numerator can
be anticipated and many zeroes are likely. Both of these problems are most
severe if the measurement interval is short. However, the use of long intervals
obviously reduces the ability of the statistic to capture short-run dynamics,
particularly when the market is very active.

In this paper, we parse the data in a manner that avoids these problems.
Market depth is most directly de"ned as the number of shares that can be
bought or sold within a given price range. Therefore, the measurement interval
for VNET should be dictated by the price level rather than calendar time. This
general approach is used by Cho and Frees (1988) to construct a `temporala
measure of price volatility that eliminates the discreteness bias by focusing on
the time takes prices to move a "xed amount. We expand upon this method of
event-time analysis by recording the trade #ows over price-determined intervals,
or `price-durationsa. From this, market depth can be computed around a price
event, often interpreted as an information event.

On some days there may be many price events while on other days there may
be very few. The price-duration framework is able to accommodate active
episodes by directly linking the frequency of measurement to the volatility of the
market. For example, if two distinct news events occur within a short period of
time causing the price to "rst rise by 50 cents then fall by 50 cents, a standard
calendar-time approach would record zero price change over the period. How-
ever, the price-duration framework would record two observations of VNET,
one after each large price movement, giving a more accurate picture of market
liquidity over this period.
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The number of price-durations that are recorded is determined by the size of
the price threshold, which can be adjusted to achieve the desired resolution. The
expected length of a price-duration is shown by Engle and Russell (1998) to be
inversely proportional to the expected volatility, and in the context of VNET,
can be interpreted as the pace at which excess demand #ows into the market.
The net directional volume, de"ned as the di!erence between the volume of
buyer-initiated and seller-initiated trades within a price-duration, is the new
proposed measure of market depth. Since each price-duration corresponds to
a similar price change, the discreteness of prices does not feed through to the
distribution of our statistic. By choosing depth as the feature to be measured, the
dependent variable becomes the net volume per price change, not the reciprocal,
and far better statistical properties are achieved.

3. Market microstructure

The validity of VNET as a measure of market depth hinges upon the
assumption that it is the imbalance between buys and sells which causes prices
to move. At "rst glance it may seem that public news presents a major challenge
to this notion. If prices adjust purely in response to an announcement rather
than underlying trading activity, the net directional transactions before a price
move, VNET, will not accurately characterize the depth of the market over that
price-duration. We argue that this is rarely, if ever, the case in the continuous-
trading specialist system of the NYSE.

First, consider the ambiguity of news. Public announcements relating to
a corporation, industry, or macroeconomic event never provide a precise indica-
tion of future price levels. Instead, analysts formulate a range of valuations and
the market converges to a new price after a period of volatile trading. During
this episode of price discovery, each trade is presumed to contain a high degree
of information, and consequently, the price impact is large.

However, even if the market could unanimously quantify the impact of
a public news event, the internal structure of the exchange mitigates exogenous
price jumps. The specialist is explicitly charged with maintaining price continu-
ity. In addition, unless all limit traders are constantly monitoring their orders so
that they can cancel them after a news release, there will remain some stale limit
orders with which to trade along the path toward the new price. So while it may
seem extreme to propose that only trades move prices, in actuality it is quite rare
to witness a large price adjustment without any intervening trades.

This is not to say that news does not indirectly in#uence prices. Information
a!ects both order submissions and the responsiveness of the market to these
orders. Asymmetric-information models of market microstructure, such as
Easley and O'Hara (1992), suggest that the presence of informed traders in the
market tends to amplify the price impact of a trade. These models assume that
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there is some probability of a private news event that is revealed to a subset of
the population. If a transaction is known to be initiated by an informed agent,
then the equilibrium price of the stock should shift according to the direction of
the trade. Because of the anonymity of these `insidersa, the price impact of
a trade, and thus the depth of the market, is determined by the assumed
probability of confronting an informed agent.

In the extreme case of a public news release, the fraction of informed traders
(i.e. traders who know that the true valuation is di!erent than the current quote)
approaches one. The market becomes extremely responsive to trading activity,
and the next trade will likely lead to a permanent price revision. Depending on
the number of stale limit orders and the extent of e!orts by the market maker to
insure a continuous price path, there may be several trades before prices reach
their new level. With prices moving on very low volume, realized VNET will be
small, appropriately re#ecting diminished market depth during this period.
While the ability to forecast VNET may seem improbable in the above context,
most price-durations do not stem from a public announcement, but instead tend
to evolve over a longer time frame. Under these more standard circumstances,
liquidity suppliers may use recent transaction patterns to develop a sense of the
market's informational distribution.

The notion of heterogeneously informed agents and adverse selection is
a well-documented aspect of the uncertainty facing liquidity suppliers. However,
intraday variability in this informational asymmetry and any implications of
such on time-varying liquidity is less thoroughly noted. If informed and liquidity
traders have di!erent trading tendencies, then the distribution of market in-
formation may be partially revealed in the nature of transaction activity at any
given moment. In that the supply of liquidity is sensitive to informational
assumptions, the realized depth of the market may be time-varying in a manner
related to trading conditions.

Distinguishing informed from uninformed agents is fundamental to a liquidity
provider's risk assessment. A number of studies have looked at this identi"ca-
tion issue from a stationary point of view using both the bid}ask spread and the
price impact of a trade. Easley and O'Hara (1987) and Hasbrouck (1988) "nd
a positive correlation between trade size and price impact, with the implication
that informed agents trade more heavily in order to pro"t from their #eeting
informational advantage. McInish and Wood (1992) reveal that the bid}ask
spread tends to widen following large volume orders.

The intensity of trade activity, de"ned by either the number of shares or the
number of transactions per time, may also be a function of the asymmetry of
information. The relationship between trading intensity and market depth
depends on which type of traders (informed or uninformed) are predominantly
responsible for episodes of above average market thickness (i.e. more transac-
tions per time). Because informed agents are often constrained by the time
sensitivity of their information, Foster and Viswanathan (1995) suggest that the
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1Quotes from regional exchanges are excluded since they often di!er from New York. The use of
17 stocks was purely arbitrary.

pace of trading be positively correlated with the proportion of informed agents,
as well as price volatility.

Most of the market microstructure literature abstracts from timing issues by
constructing "xed trade interval models. Easley and O'Hara (1992) indirectly
loosen this assumption by allowing traders the option of not trading during an
interval. From this, a longer time between transactions indicates that market
participants have abstained from trading. Since the portfolio adjustment needs
of liquidity traders should be uniform throughout the day, informed agents
likely initiate swings in transaction frequency. Again this supports the notion
that high trade intensity is related to greater informational asymmetry, and low
liquidity.

With the availability of transaction-by-transaction data for high frequency
markets such as the NYSE, the time between trades has become another statistic
for the empiricist. Engle and Russell (1998) model durations between trades for
IBM, revealing signi"cant autocorrelation or clumping of orders. If the factors
which determine the timing of trades or price changes are related to the
distribution of information amongst market traders, then forecasts of the time
between market events may give added insight into the behavior of liquidity.
The extent of the relationship between trading activity, market volatility, and
the cost of trading will be explored in the empirical models below.

4. Data

The data for this study is taken from the TORQ (Trades, Orders, Reports, and
Quotes) set, compiled by Joel Hasbrouck and the New York Stock Exchange. It
contains tick-by-tick data for 144 stocks over the three-month period, Novem-
ber 1, 1990 through January 31, 1991. Trade time, trade size, and the prevailing
quotes are extracted for the 17 stocks which traded most frequently on the "rst
day of the sample, November 1, 1990.1 A minimum level of trading activity is
necessary in order to isolate price events within a single day. This abstraction
from extremely inactive stocks should not be completely ignored, but the
econometric techniques used in this analysis of intraday liquidity #uctuations
apply most readily to active investment assets.

During these months, trading was abnormally slow on two dates, November
23rd (the Friday after Thanksgiving) and December 27th. Because VNET is
theoretically grounded in a continuous trading environment, these two dates are
dropped from the analysis leaving 61 days of data. While it may be interesting in
future work to investigate these low-activity days, at present we focus on the
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normal liquidity characteristics of the market. Similarly, overnight episodes are
ignored in this purely intra-day study.

In determining the prevailing quotes for a given transaction, we implement
the &"ve second' rule suggested by Lee and Ready (1991). On the NYSE #oor,
new quotes can be posted more quickly than transactions can be recorded,
meaning a quote revision may be time stamped earlier than the instigating trade.
Matching transactions with quotes that are at least 5 s old mitigates the concern
over mis-sequenced data records.

Along with the prevailing quote, each trade is given a marker according to the
initiating party (buyer or seller). Again following Lee and Ready, a modi"ed
&midpoint' rule is used to infer this unrecorded information. If the transaction
price is closer to the ask than the bid quote, then it is a buy, otherwise it is
labeled a sell. However, if the transaction occurred precisely at the midpoint
between the bid and ask, then the &tick' rule applies. Under this method, an up
tick, meaning the current transaction price is greater than the previous price,
implies that a buyer must have initiated the trade. Likewise, down ticks indicate
sells. Lee and Ready found this process for distinguishing buys from sells to be
the most accurate for a variety of simulated scenarios.

From here, the data for each stock are "ltered in order to create a consistent
set of observations and to isolate the intraday price #uctuations. To account for
irregular trading patterns and procedures around the start of each day, the "rst
"ve minutes of trading are dropped. Although the opening of the session can be
both interesting and important, the rate of informational #ows and price
discovery may be fundamentally di!erent from the rest of the day. This paper
hopes to isolate the impact of trading activity on market depth, independent of
time-of-day e!ects. The close can also present problems. The TORQ data set
includes a number of transactions time-stamped after the 4 : 00 p.m. bell. While
the true timing of these trades may be somewhat unclear, in practicality this is
not an issue because none of these post-close trades happen to trigger a price-
duration. The "ltering procedure used to de"ne a price-duration (described in
detail later) ignores overnight activity, meaning that the trades following the last
price-duration of a day are e!ectively excluded from the analysis.

In measuring price movements we use the change in the midpoint of the
specialist's quotes. Not only does the mid-quote price provide a more accurate
indication of the true market value of the asset, it does not encounter the
problem of bid}ask bounce, although discreteness still plays a role. Transaction
prices are also di$cult to interpret because they often depend upon the size of
the trade, even if the equilibrium valuation remains constant.

The models analyzed in this paper rely on a construct called a price-duration.
Unlike typical trade-to-trade durations, price-based durations are de"ned as the
time elapsed between signi"cant price movements. Although this aggregation of
trades over stable price sequences hides some of the information contained in
the individual transaction records, much of the noise stemming from price
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Fig. 2. NYSE quote patterns for Exxon on November 1, 1990. Mprice is the midpoint between the
bid and ask, Pbound is our constructed price-duration barrier. The dashed vertical lines mark the
end of a price-duration.

2The overnight period is excluded so no price-durations range across days. It should be noted
that our exclusion of the "rst 5-min of trading each morning will impact the daily sequence of
recorded durations.

discreteness is avoided as well, allowing for a more realistic view of the equilib-
rium price behavior of the market. To insure we are isolating real price events,
and not simply stray data entries, at least two consecutive data points outside
the preset threshold are required to signal the end of a duration.

Fig. 2 displays a one-day sample of the time paths of the quote midpoint
(Mprice) and the constructed price barriers (Pbound) used to de"ne
price-durations. The stock-speci"c threshold magnitudes are designed to be
wider than a random noise jump, yet narrower than a true permanent price
adjustment. In this way, the price-duration methodology reaps the bene"ts of
aggregation while maintaining the #exibility of an event-time analysis.

Obviously, distinguishing noise from information is fairly arbitrary. The
width of the pre-de"ned price threshold can be calibrated to suit the particular
needs of the analyst. For this study we pick thresholds yielding roughly ten
informational events per day. With this in mind, the price level and volatility of
each stock determine the absolute price change necessary to achieve an average
of ten price-durations per day } for the 17 stocks this ranged from 1/16th to
1/4th of a dollar (see Table 1 below). Despite our aim to equalize the average
number of identi"ed price events across stocks, the daily frequency ranged from
as few as 5 for California Federal Bank (CAL) to 15 for IBM due to the
minimum 1/8th tick size.2

The number of price-durations identi"ed over the 61 trading days ranged
from 321 for California Federal Bank to 945 for IBM, with corresponding
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Table 1
Price-duration statistics and underlying quote volatility (Nov. 1990}Jan. 1991).

Stock

Durations
per day

Nominal
price

threshold ($)

Average
midquote
price ($)

Percentage
price

threshold (%)

Annualized
half-hour

volatility (%)

Boeing (BA) 10 0.1875 45.61 0.41% 33.1
Cal Fed Bank (CAL) 7 0.0625 3.29 1.90% 113.3
Colgate-Palmolive (CL) 8 0.1875 70.56 0.27% 21.3
CPC International (CPC) 15 0.1250 78.73 0.16% 20.6
(DI) 7 0.1250 20.25 0.62% 36.3
FedEX (FDX) 9 0.1250 34.04 0.37% 37.9
Fannie Mae (FNM) 8 0.1875 33.72 0.56% 39.0
FPL Group (FPL) 12 0.0625 28.44 0.22% 17.6
General Electric (GE) 12 0.1875 55.80 0.34% 26.0
Glaxo Well (GLX) 9 0.1250 32.48 0.38% 27.7
Hanson PLC (HAN) 10 0.0625 18.42 0.34% 32.2
IBM (IBM) 15 0.2500 113.30 0.22% 21.1
Philip Morris (MO) 7 0.1875 50.31 0.37% 21.6
Potomac Electric (POM) 8 0.0625 20.15 0.31% 19.6
Schlumberger (SLB) 13 0.1875 55.31 0.34% 28.6
AT&T (T) 9 0.1250 31.28 0.40% 27.4
Exxon (XON) 10 0.1250 50.57 0.25% 14.9

average price-duration times of 2,354 and 1,333 s, respectively. The average
volume of trading activity within a price-duration ranged from 8,566 shares in
6 transactions for CPC International to 154,091 shares in 63 transactions for
Philip Morris. Of course, these statistics are sensitive to the pre-selected distance
that quotes must move to trigger a price-duration.

For each price-duration, a variety of summary measures are compiled. The
number of trades, the total volume traded, the actual amount prices moved, the
elapsed clock time (PTIME), and the bid}ask spread are the fundamental
statistics; average trade size and the average time between trades, as well as
interaction e!ects, are imputed.

The central statistic in this study is VNET, which captures the net directional
(buy or sell) volume over price-duration. That is, the imbalance between the
number of shares bought and the number of shares sold within a duration depicts
the realized depth of the market. This statistic reveals the amount of one-sided
volume that was traded before the quotes moved beyond the speci"ed threshold.

<NE¹"logK+i (d
i
vol

i
)K.

In the de"nition above, d is the direction of trade indicator (buy"1 and
sell"!1) and vol is the number of shares traded. The summation is over all
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3The inverted U-shaped pattern for intraday duration times re#ects heightened market intensity
and volatility at the beginning and end of each trading session.

transactions within a given price-duration. As described in the next section, the
entire VNET equation is estimated in log levels.

5. Empirical models

In developing an intraday model of liquidity, we hope to clarify the relation-
ship between market activity and price movements. The amount of one-sided
volume (VNET) that can be sustained before prices adjust does not appear to be
constant over time for a given stock. If this variability relates to market
perceptions about the extent of informational asymmetry, then perhaps some
signals may be found in trading patterns. Within the price-duration framework,
the time between price events should be included in the set of explanatory
variables. It is likely that pertinent information may be conveyed in the decision
of when to trade as well as in how many shares and at what price. In light of this
we "rst model the timing of price-durations.

5.1. PTIME

The autoregressive conditional duration (ACD) model assumes the time
between future events to be a function of the time between past events. The
capabilities of these models to forecast time durations was introduced by Engle
and Russell (1997). In what can be thought of as an equivalent to an ARMA
process for time durations, these models forecast the time between events
conditioned on their history.

t
t
"u#a1X

t~1#b1t
t~1 .

The standard ACD(1, 1) speci"cation shown above posits the conditional
time (t) to be a function of the previous actual duration (X) and the
previous conditional duration. As described below, a generalization of this basic
model is employed to model PTIME for each stock. As market depth is
obviously contingent on the length of the trading interval, a more accurate
estimate of the expected rate of time #ow should improve these dynamic
liquidity models.

In estimating conditional price-duration times, PTIME is "rst diurnally
adjusted with respect to time-of-day e!ects by dividing by the mean value of
PTIME in the relevant hour of the day. Although the intraday pattern does not
always display the prominent inverted U-shape found in transaction-based
duration times, F-tests con"rm the signi"cance of hourly dummy variables in
the model.3 The normalized price-durations are next examined for serial cor-
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relation. With 15 lags, the Ljung-Box statistics for the null hypothesis of
temporal independence exceed the 5% critical value for 8 of the 17 stocks
examined, providing evidence of signi"cant clustering of price movements over
time. These results corroborate the "ndings of Engle and Russell (1998). This
suggests that an ACD model may indeed be useful in forecasting PTIME.

The ACD model is considered a conditional point process. This class of models
focuses on the timing of irregularly spaced events. Fundamental to this formulation
is the hazard function, which is the instantaneous probability of an event. Although
the hazard may often depend on the time since the last event, a constant hazard
function is a simple initial guess as to the nature of this process. Econometrically
this case is rather clean because the standardized durations (e), de"ned as the actual
duration (PTIME) divided by expected duration (t), will be exponentially distrib-
uted with a standard deviation equal to their mean of one. To test the validity of this
assumption we perform one-tailed ¹-tests for unit variance. The hypothesis is
rejected for 7 of the 17 stocks, revealing signi"cant excess dispersion.

To accommodate the greater volatility apparent in the data we instead
estimate the standardized durations with a Weibull distribution. This allows for
a monotonically increasing or decreasing hazard function, as well as the central
(constant hazard) case that is equivalent to the exponential model. Given that
the data appears to have a tendency for long durations (excess dispersion), we
may expect a decreasing hazard function (c(1) to work best. The Weibull ACD
models appear to adequately capture the excess dispersion of the input series.
The hypothesis that the "tted values have unit variance, H0 : p2e"1, can be
accepted for all 17 stocks.

Before settling on a "nal speci"cation for estimating conditional price-dura-
tions, a few additional structural choices are necessary. Namely, the number of
lags and any exogenous variables to be included. To prevent overnight episodes
from entering the analysis we must exclude one observation at the start of each
new day for every lag. A simple "rst order process produces reasonable results
and minimizes the number of lost observations. To this base structure we add
a lagged value of the nominal bid}ask spread (SPR}NOM) as a predetermined
component. The Ljung-Box autocorrelation statistics for the conditional dura-
tions produced by this "nal speci"cation are below the 5% critical value for all
17 stocks examined.

In Eq. (1), EPTIME is the conditional expectation of PTIME. This WACD(1,
1) model uses the lagged conditional expectation and the lagged value of
PTIME, along with the predetermined variable SPR}NOM

t~1 to forecast the
time between price changes.

EP¹IME
t
"u#a1P¹IME

t~1#b1EP¹IME
t~1#/SPR}NOM

t~1 .
(1)

Table 2 below lists the ACD parameter estimates for each of the 17 stocks in the
sample. As can be seen in the second to last column, lagged SPR}NOM is highly
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Table 2
Maximum likelihood estimated coe$cients (p-values) for Eq. (1) (Nov. 1990}Jan. 1991)

Eq. (1): EPTIME
t
"u#aPTIME

t~1
#bEPTIME

t~1
#/SPR}NOM

t~1

u a b / c(H
0

: c"1)

BA 0.78 (0.0001) 0.16 (0.001) 0.49 (0.0001) !0.36 (0.0001) 0.99 (0.69)
CAL 1.98 (0.0001) 0.059 (0.27) !0.173 (0.23) !0.86 (0.0001) 1.03 (0.45)
CL 1.07 (0.0001) 0.04 (0.42) 0.40 (0.04) !0.50 (0.0001) 1.01 (0.80)
CPC 0.29 (0.001) 0.09 (0.001) 0.77 (0.0001) !0.15 (0.004) 0.97 (0.19)
DI 1.07 (0.0001) 0.10 (0.04) 0.14 (0.48) !0.34 (0.002) 0.91 (0.0002)
FDX 0.33 (0.001) 0.05 (0.11) 0.82 (0.0001) !0.21 (0.0001) 0.94 (0.13)
FNM 0.35 (0.0001) 0.14 (0.001) 0.73 (0.0001) !0.22 (0.0001) 1.04 (0.32)
FPL 1.64 (0.0001) !0.05 (0.05) !0.35 (0.03) !0.37 (0.0001) 0.89 (0.0002)
GE 0.23 (0.0001) 0.07 (0.002) 0.82 (0.0001) !0.13 (0.0001) 0.95 (0.09)
GLX 0.17 (0.06) 0.11 (0.01) 0.73 (0.0001) !0.01 (0.76) 1.01 (0.80)
HAN 1.95 (0.0001) 0.02 (0.42) !0.51 (0.0001) !0.53 (0.0001) 0.95 (0.13)
IBM 0.25 (0.0001) 0.21 (0.0001) 0.64 (0.0001) !0.09 (0.0001) 1.03 (0.32)
MO 0.76 (0.0001) 0.11 (0.03) 0.54 (0.001) !0.40 (0.0001) 1.05 (0.23)
POM 1.80 (0.0001) 0.06 (0.19) 0.01 (0.92) !0.86 (0.0001) 1.05 (0.23)
SLB 0.58 (0.0001) 0.12 (0.003) 0.55 (0.0001) !0.24 (0.0002) 1.04 (0.21)
T 0.28 (0.05) 0.14 (0.003) 0.65 (0.0001) !0.07 (0.27) 0.92 (0.04)
XON 0.25 (0.05) 0.14 (0.003) 0.67 (0.0001) !0.06 (0.32) 0.95 (0.11)

signi"cant in predicting the time between price changes. The negative coe$cient
supports the theoretical prediction that wider bid}ask spreads are indicative of
a more volatile market.

EPTIME incorporates past information on PTIME and SPR}NOM and
represents the conditional forecast of the time until the next signi"cant price
change. As will be seen, unanticipated shocks to PTIME will be most useful in
modeling market depth. PTIME}ERR is de"ned as actual divided by expected
PTIME and is the fraction of PTIME that could not be predicted by the
WACD(1,1) model. While these residuals should be independent of our informa-
tion set, there may still remain some unidenti"able, yet systematic component of
the forecast error that is related to the level of liquidity in the market. Surprises
in the timing of price changes re#ect unanticipated trade #ows. To the extent
that aggregate market activity is endogenous to an agent's transaction decision,
PTIME}ERR can have direct impact on realized market depth.

5.2. VNET (depth)

VNET measures the net directional volume that can be traded before prices
are adjusted. Ex post, the new statistic provides a measure of realized market
depth. This section develops a model to forecast market depth over a price-
duration. For a variable to potentially explain time-varying liquidity it must be
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4 Interestingly, the end-of-duration bid}ask spread out-performed the average spread in all
speci"cations. Perhaps in forecasting liquidity it is important to include evidence of the informa-
tional concerns at the instant closest to the upcoming forecast period.

5Large spreads are any bid}ask deviation greater than the minimal one eighth. Minimal spreads
are present in nearly half of all transactions for most stocks.

6Expected PTIME is the one-step forecast taken from the WACD(1, 1) model.

related to the extent of informational asymmetry in the market. As discussed
earlier, market microstructure theory provides many candidates. The explana-
tory variables tested in the various formulations for VNET are:

SPREAD"log(ASK/BID) at the "nal trade of the price-duration4

NUMBER"the log of the number of trades during the price-duration
VOLUME"the log of the total volume traded during the price-duration
NUM}SPR"the log of the number of trades occurring at large spreads5
VOL}SPR"the log of the aggregate volume transacted at large spreads
PJUMP"the log of the absolute price change over the duration
EPTIME"the conditional expectation of PTIME6

LEPTIME"log(EPTIME)
PTIME}ERR"log(PTIME / EPTIME)

A number of di!erent speci"cations are examined, with the search working
from general down to more speci"c. The most general formulation tested on
each of the 17 stocks is included in Appendix A. Because we are looking for
a single speci"cation that explains liquidity in all 17 of the individually modeled
stocks, our choice for the `besta model is somewhat subjective. The set of
regressors that display statistical signi"cance for a majority of the stocks turns
out to be fairly concise. Eq. (2) below (with all variables in logs) is the preferred
model. For 14 of the 17 stocks, F-tests can not reject the hypothesis that the four
variables dropped from the most general model are insigni"cant.

<NE¹"b0#b1SPREAD(!1)#b2<O¸;ME(!1)

#b3N;MBER(!1)#b4¸EP¹IME#b5P¹IME}ERR. (2)

The lagged dependent variable never enters signi"cantly in any of the speci"ca-
tions within our search process. However, estimation of an AR(1) model of
VNET found all stocks to have positive autocorrelations, with 13 of the 17
statistically signi"cant. The insigni"cance of lagged VNET in Eq. 2 implies that
the right-hand side variables must adequately represent the past depth of the
market.

Looking at the regression results in table 3, the coe$cients on SPREAD(!1)
appear to qualitatively "t our expectations. The bid}ask spread immediately
preceding a price-duration is negatively related to VNET for 14 of the 17 stocks,
although the con"dence level for the estimates is above 95% for only 5. The
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spread also impacts VNET indirectly through the expected PTIME in the ACD
model. This e!ect is also generally negative. Since the bid-ask spread and depth
are both aspects of liquidity, this relationship is not surprising.

The number of trades per duration depicts the transaction intensity of the
market. If periods of unusually rapid trading re#ect an in#ux of informed traders,
asymmetric information models would predict the number of trades within a price-
duration to negatively impact liquidity. Indeed, the coe$cient on NUMBER(!1)
is negative for all but one stock, with 8 of these statistically signi"cant.

While the aggregate number of shares traded within a duration (VOLUME)
may be another indication of transaction intensity, it also provides perspective
for the relative imbalance between buys and sells associated with a given level
of VNET. Since VNET is an absolute measure of one-sided trading, higher
VOLUME implies a smaller percentage imbalance in orders, all else equal. In
Table 3, the coe$cients on VOLUME are uniformly smaller than one. This less
than proportional response of VNET to VOLUME may re#ect the heightened
risk of informed trading associated with higher volume trades.

The error in forecasting the time length of a price-duration, PTIME}ERR, has
an unambiguously signi"cant positive impact in all of the stocks tested. Although
this is a contemporaneous variable, a trader can in#uence this shock term by
trading on one side of the market. The positive coe$cient on PTIME}ERR shows
that the market interprets `impatiencea to re#ect a high likelihood of asymmetric
information. In this way, rapid trading reduces the volume that could otherwise
be traded at a particular price. From Table 3 it can be seen that this coe$cient is
about 0.4 so that a trader who spreads his trades over twice the expected time, all
else equal, would face market depth 40% greater.

Eq. (2) is estimated assuming PTIME}ERR to be a weakly exogenous
variable, which may seem somewhat tenuous. However, if the parameter of
interest is the expected value of VNET conditional on the time allowed to trade,
PTIME}ERR will be weakly exogenous. That is, given an expectation of the
time between price movements (EPTIME), the error in this forecast
(PTIME}ERR) is determined by actual PTIME. And in this model, contempor-
aneous PTIME is under the control of the agent since trading activity instigates
price movements. We envision a trader who contemplates exercising his market
power at a particular speed and who wants to know how many shares can be
traded in that time with less than a speci"ed price impact. The answer is the
expectation of VNET conditional on PTIME.

The anticipated duration, LEPTIME, also enters positively in Eq. (2) and is
statistically signi"cant for 12 stocks. The expected time for prices to move a "xed
amount is simply the reciprocal of an expected volatility measure. Since the
model is estimated in logs, the coe$cient is interpreted as the negative of
a volatility e!ect. It is therefore not surprising that increased volatility leads to
decreased market depth since high volatility is associated with news and the
potential for informed trading.
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5.3. Pooled estimates

The estimates for the individual stocks presented above are similar in charac-
ter but not uniformly signi"cant. This is unsurprising because the sample period
is rather short and there are many obvious sources of noise in VNET that in#ate
standard errors. To obtain estimates that summarize the behavior of VNET
across these 17 stocks, a pooled regression is computed. As the typical volume
and the threshold for price-durations are di!erent for each stock, it is important
to allow stock-speci"c e!ects, so the intercept is now a 17-element vector.
Because the regression variables are already in log levels, this set of additive
dummies control for the cross-sectional heterogeneity assuming elasticities are
constant across stocks.

The OLS estimated pooled equation (standard errors in parentheses) is

<NE¹
t
"!0.33

(0.04)
)SPREAD

t~1#0.15
(0.02)

)<O¸;ME
t~1

!0.15
(0.02)

)N;MBER
t~1#0.39

(0.03)
)¸EP¹IME

t

#0.38
(0.01)

)P¹IME}ERR
t
. (3)

All regressors now show signi"cant in#uence at greater than 99.9% con"dence,
which is to be expected as we increase the sample size. The signs and the
magnitudes are similar to the 17 individual regressions and support our earlier
conclusions.

6. Robustness of the model

To validate the usefulness of VNET and the price-duration framework for
measuring and forecasting intraday market depth, we next test the robustness of
the models with respect to both the sample period and the width of the price
threshold. As a by-product of the latter exercise, an estimate of the shape of the
market reaction curve will be derived for a representative stock.

6.1. The new sample (August}December 1997)

For the "ve months between August and December 1997, transaction and
quote records are extracted from the TAQ (Trades and Quotes) data set for 16 of
the 17 stocks (California Federal Bank (CAL) is no longer traded on the NYSE).
This period is desirable for several reasons. First, none of the 16 stocks split
during this time. Second, the minimum tick size was lowered from 1/8th to
1/16th on June 24, 1997, providing an interesting comparison to the original
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7The use of a percentage price threshold scheme could potentially create large jumps in the
implied absolute price change as the number of discrete price ticks changes with the underlying asset
price.

8Discreteness in prices limits the choice of possible nominal thresholds making it often impossible
to precisely match the relative threshold of the original sample.

sample. Finally, the market is much less bullish in this more recent period with
an average monthly rate of return of 0.3%, as compared to 4.1% in the 1990}91
TORQ data.

To maintain consistency with the original analysis, VNET should be measured
over an identical percentage price change. However, price-durations are de"ned
by a nominal price change in order to insulate VNET from the distortions caused
by price discreteness.7 Unfortunately, this complicates cross-sample comparisons.
Since nominal share prices may have shifted substantially between 1990 and 1997,
the nominal price threshold must also be adjusted in order to generate the desired
relative threshold. If the percentage threshold for each stock could be matched
precisely across samples, and if the volatility of a stock was unchanged between
1990 and 1997, then we would expect the average number of price-durations per
day to be roughly similar as well.8 However, for many stocks, daily volume and
intraday volatility have increased from their earlier levels (see Fig. 3). Conse-
quently, the average number of identi"ed price-durations per day is greater in the
1997 sample for 11of the 16 stocks.

In comparing only a few months of data separated by nearly seven years, it is
di$cult to make a de"nitive assessment of market trends. Any noted di!erences
between the two periods could very well be unrelated to their temporal spacing.
The increase in trading activity and price volatility between the original period
of November 1990}January 1991 and the new sample of August 1997}Decem-
ber 1997 may or may not re#ect a consistent trend in the NYSE, and for this
study it is not important.

Of more direct interest to this research is the di!erence in market depth as
measured by VNET. Normalized by the percentage price change implied by the
threshold size, the average value of VNET is greater in 1997 for 11 of 16 stocks.
VNET measures depth in units of volume per price change. It may be expected
that average VNET will rise with volume, and fall with volatility. Inspection of
Fig. 3 reveals that this does seem to be the case. The "ve stocks that have smaller
VNET in the current period than in the original period also have some of the
smallest gains in volume relative to their increase in volatility. As both volume
and volatility are coarse measures of liquidity, this relationship is reassuring.

6.2. Re-estimating Eq. (1) (PTIME )

Similar to the original sample, the new deseasonalized PTIME series reveal
signi"cant autocorrelation. At 15 lags, the Ljung-Box statistics are greater than
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Fig. 3. The percentage changes in average VNET (normalized by the percentage price threshold),
daily volume, and annualized half-hour volatility from Nov. 1990}Jan. 1991 to Aug. 1997}Dec. 1997.

the critical value of 25 for 15 of 16 stocks. In addition, the excess dispersion of
PTIME (i.e. standard deviation greater than one) noted in Section 5 is also
apparent in the new sample for 11 of 16 stocks.

The maximum likelihood estimates of the WACD (1, 1) model are displayed
in Table 4. The model seems to do a reasonable job of capturing the autocorrela-
tion, with only 3 residual series still showing signi"cant autocorrelation. Unfor-
tunately, the excess dispersion is not so e!ectively remedied. As the "nal column
of Table 4 reveals, the c parameter, which controls the rate of increase/decrease
of the hazard function, is signi"cantly greater than one for 13 stocks. This
implies an increasing hazard, which does not help account for the abundance of
long durations in the raw data. Indeed, the residuals for 11 stocks retain excess
dispersion. Obviously this WACD (1, 1) speci"cation does not completely
characterize the distribution of this new sample. However, for consistency with
the original estimates, this model will still be used to produce expectations of the
time between price changes (EPTIME).

Again in accordance with the earlier results, the e!ect of the bid-ask spread on
expected PTIME is negative. Comparing Table 4 below to the original estimates
in Table 2, the coe$cients for SPR}NOM (the nominal bid-ask spread) are
nearly an order of magnitude smaller for the new sample. This may re#ect the
1/16th minimum tick regime of this more recent period, as opposed to 1/8th in
1990}91. Reduced tick size has led to smaller average bid}ask spreads, at least
for the 16 stocks in this study over the two periods being examined. The
dynamics of the bid}ask spread and its relationship to volatility may also have
changed since the switch to 1/16ths. However, this paper will not investigate this
issue beyond its immediate impact on PTIME.
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Table 4
Maximum likelihood estimated coe$cients (p-values) for Eq. (1) (Aug. 1997}Dec. 1997)

Eq. (1): EPTIME
t
"u#aPTIME

t~1
#bEPTIME

t~1
#/SPR}NOM

t~1
(August 1997}December 1997)

u a b / c(H
0

: c"1)

BA 0.04 (0.002) 0.09 (0.0001) 0.89 (0.0001) !0.013 (0.002) 0.99 (0.76)
CAL NA NA NA NA NA
CL 0.13 (0.0001) 0.07 (0.0001) 0.86 (0.0001) !0.062 (0.0001) 1.05 (0.01)
CPC 0.11 (0.004) 0.10 (0.0001) 0.85 (0.0001) !0.053 (0.02) 1.17 (0.0001)
DI 0.07 (0.0001) 0.05 (0.0001) 0.93 (0.0001) !0.039 (0.0001) 1.06 (0.01)
FDX 0.14 (0.0001) 0.13 (0.0001) 0.79 (0.0001) !0.066 (0.0001) 0.99 (0.55)
FNM 0.15 (0.0001) 0.07 (0.0001) 0.88 (0.0001) !0.084 (0.0001) 1.20 (0.0001)
FPL 0.06 (0.001) 0.04 (0.0001) 0.93 (0.0001) !0.023 (0.01) 1.07 (0.001)
GE 0.05 (0.0001) 0.17 (0.0001) 0.81 (0.0001) !0.012 (0.0001) 1.17 (0.01)
GLX 0.33 (0.0001) 0.11 (0.0001) 0.69 (0.0001) !0.132 (0.0001) 1.05 (0.02)
HAN 0.26 (0.01) 0.06 (0.01) 0.78 (0.0001) !0.087 (0.01) 1.13 (0.0001)
IBM 0.08 (0.0001) 0.13 (0.0001) 0.83 (0.0001) !0.031 (0.0001) 1.08 (0.0002)
MO 0.10 (0.0001) 0.12 (0.0001) 0.81 (0.0001) !0.027 (0.0001) 1.06 (0.02)
POM 0.07 (0.0002) 0.08 (0.0001) 0.88 (0.0001) !0.027 (0.0003) 1.10 (0.0001)
SLB 0.09 (0.0001) 0.14 (0.0001) 0.80 (0.0001) !0.022 (0.003) 1.09 (0.0001)
T 0.08 (0.0001) 0.09 (0.0001) 0.86 (0.0001) !0.028 (0.0001) 0.97 (0.16)
XON 0.13 (0.0001) 0.11 (0.0001) 0.82 (0.0001) !0.045 (0.0001) 1.12 (0.0001)

A likelihood ratio breakpoint test is used to test the stability of the ACD
model of PTIME across the two sample periods, stock by stock. The indepen-
dent estimates presented above represent the unrestricted model. For the re-
stricted model, the two samples are stacked and deseasonalized by a single set of
time-of-day constants. Eq. (1) is then estimated for this combined sample. The
coe$cients and ¹-statistics are listed in Table 5. Comparing the maximum of
the log-likelihood function for these restricted estimates to the unrestricted
estimates, the likelihood ratio test accepts the stability of the model across the
two periods for 7 of the 16 stocks. However, given the nearly seven year span
between these two periods and the qualitative similarities in the parameter
estimates and large sample sizes, a lack of universal statistical stability does not
necessarily invalidate the original "ndings.

6.3. Re-estimating Eq. (2) (VNET )

The estimates of Eq. (2) for the new sample are displayed in Table 6. The sign,
magnitude, and signi"cance levels of the coe$cients are fairly similar to those of
the original sample presented in Table 3. Standard errors are a bit smaller in the
new sample, which generally has a greater number of observations per stock. As
in the previous section, a Chow breakpoint test is used to examine the model's
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Table 5
Maximum likelihood estimated coe$cients (p-values) for Eq. (1) (joint sample).

Eq. (1): EPTIME
t
"u#aPTIME

t~1
#bEPTIME

t~1
#/SPR}NOM

t~1

u a b / c(H
0

: c"1)

BA 0.03 (0.0001) 0.08 (0.0001) 0.90 (0.0001) !0.013 (0.001) 1.00 (0.84)
CAL NA NA NA NA NA
CL 0.02 (0.0002) 0.07 (0.0001) 0.92 (0.0001) !0.009 (0.03) 1.06 (0.0001)
CPC 0.01 (0.04) 0.05 (0.0001) 0.94 (0.0001) 0.001 (0.69) 1.08 (0.0001)
DI 0.12 (0.004) 0.12 (0.0001) 0.79 (0.0001) !0.020 (0.06) 1.08 (0.01)
FDX 0.07 (0.0001) 0.18 (0.0001) 0.76 (0.0001) !0.005 (0.42) 1.00 (0.92)
FNM 0.36 (0.0001) 0.19 (0.0001) 0.61 (0.0001) !0.131 (0.001) 1.13 (0.0001)
FPL 0.01 (0.06) 0.02 (0.002) 0.97 (0.0001) !0.001 (0.48) 0.98 (0.27)
GE 0.03 (0.0001) 0.12 (0.0001) 0.86 (0.0001) !0.004 (0.0001) 1.06 (0.0003)
GLX 0.28 (0.0001) 0.19 (0.0001) 0.62 (0.0001) !0.08 (0.001) 1.04 (0.09)
HAN 0.25 (0.001) 0.05 (0.01) 0.81 (0.0001) !0.11 (0.0003) 0.99 (0.69)
IBM 0.05 (0.0001) 0.15 (0.0001) 0.83 (0.0001) !0.020 (0.0001) 1.07 (0.0001)
MO 0.05 (0.0001) 0.14 (0.0001) 0.83 (0.0001) !0.014 (0.0001) 1.04 (0.01)
POM 0.01 (0.07) 0.02 (0.002) 0.97 (0.0001) 0.001 (0.76) 1.04 (0.07)
SLB 0.01 (0.001) 0.07 (0.0001) 0.92 (0.0001) 0.001 (0.84) 1.10 (0.0001)
T 0.04 (0.0001) 0.11 (0.0001) 0.87 (0.0001) !0.009 (0.04) 0.95 (0.01)
XON 0.02 (0.0001) 0.09 (0.0001) 0.90 (0.0001) !0.004 (0.05) 1.04 (0.0002)

stability over time. The combined sample estimation (see Table 7) uses EPTIME
derived from the restricted PTIME model in the previous section. Chow tests
"nd the VNET model to be stable across samples for 9 of the 16 stocks. Given
the signi"cant di!erences in the level of trading, volatility, and minimum tick
size between the two samples, these results present a relatively promising
statement as to the integrity of the relationships between liquidity, prices, and
market activity presented in Section 5.

6.4. Sensitivity to the price threshold

Another direction in which to test the robustness of the relationship between
market liquidity and trading activity is with respect to the width of the aggrega-
tion window. Our original thresholds were designed to generate roughly 10}15
durations per day. However, this choice was somewhat arbitrary. While a cer-
tain base number of observations are required for an intraday study, the optimal
price range over which to measure market depth ultimately depends on the
tolerance of the trader.

The duration-based statistic, VNET, measures the depth of the market away
from the posted quotes. VNET estimates a single point along the market
reaction curve from which we can infer only the average slope, not the true shape
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Fig. 4. Some possible shapes of the market reaction curve.

9Beyond the limit order book possibly looking convex in price-volume space, the authors are not
aware of any theoretical foundation for the appropriate shape of the market reaction curve.

10Even at narrow price thresholds, some days would be expected to contain no price-durations.

11Estimated market reaction curves for the other stocks showed similar linear patterns.

of the curve. As seen in Fig. 4, linear, convex, and concave functions can all be "t
through the two known points (quoted depth and VNET).9

By adjusting the size of the threshold from which price-durations are de"ned, one
can estimate other points along the market reaction curve. So although the
discussion to this point has abstracted from any non-linearity issues, it may be
possible to empirically examine the plausibility of this assumption. For this exercise,
the 1/16th regime is advantageous in that it permits a greater number of nominal
price increments within a given range. Because price-durations are triggered by
movements in the mid-point of the quotes, the smallest feasible change is half of the
minimal tick, or 1/32nd, as the quotes may move one at a time.

Over the 1997 sample, price-durations are recalculated for Fannie Mae
(FNM) using eight di!erent price increments. FNM is a good representative
stock because its share price is high enough to support a wide range of threshold
widths. The narrowest threshold examined is 3/32nds ($0.0935) and the max-
imum price change is 10/32nds ($0.3125) } the widest threshold that created an
average of at least three observations per day.10 The number of price-durations
at each threshold increment over the 102-day sample is presented in the "rst
column of Table 8.

Average VNET increases, as expected, with the price threshold (see Fig. 5
below). More over, this upward sloping market reaction schedule is fairly
linear.11 The "rst point on the curve is not measured VNET, but rather the
average quoted depth of the market. The price change associated with this value
is labeled 1/32nd since fully depleting the quoted volume would necessitate
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Table 8
Number of price-durations (n) and OLS estimated coe$cients from Eq. (2) for FNM at various price
thresholds (Aug. 1997}Dec. 1997).

Eq. (2): VNET"a#b1*SPREAD(!1)#b2*VOLUME(!1)#b3*NUMBER(!1)#b4*EP-
TIME#b5*PTIME}ERR

threshold n a b1 b2 b3 b4 b5

0.09375 3496 4.682 !0.187 0.198 !0.173 0.341 0.471
0.125 2135 3.401 !0.140 0.346 !0.348 0.442 0.456
0.15625 1457 4.641 !0.113 0.383 !0.313 0.234 0.349
0.1875 1054 5.533 0.111 0.402 !0.331 0.297 0.318
0.21875 765 4.829 !0.038 0.474 !0.460 0.233 0.320
0.25 585 5.033 0.098 0.337 !0.283 0.436 0.277
0.28125 442 5.226 !0.021 0.234 !0.238 0.464 0.209
0.3125 345 5.671 0.144 0.396 !0.465 0.413 0.240

a move in the quote to at least the next tick (i.e. a half-tick move in the
mid-quote). To the extent that the quoted volume can be thought to re#ect the
depth of the market at small price changes, the coincidence of this point with
the rest of the curve provides further support for the plausibility of VNET as
a measure of market depth. The rest of the points depict the average, uncondi-
tional levels of VNET over the "ve-month sample.

By replicating the estimation of Eq. (1) and (2) at each of the feasible price
thresholds, the conditional market reaction curve can be derived, as well. These
PTIME and VNET equations are re-estimated on data generated by each of the
eight feasible thresholds for Fannie Mae (FNM). The parameters of the VNET
model at the various price bands are displayed in Table 8. While there is a good
deal of consistency, the relationships do adjust somewhat as the aggregation
threshold changes. Bilateral F-Tests con"rm the stability of the coe$cients
across adjacent price thresholds, but a joint test rejects the hypothesis that all
eight models are statistically identical. Of course, these tests do not have
standard distributions as the estimates are not independent.

From this set of parameter estimates, the behavior of the full market reaction
curve can be determined, conditional on the "ve explanatory variables in Eq. (2).
The solid lines in Figs. 6a}e represent the "tted values of VNET using the means
of the right-hand side variables over the "ve-month period. This is the baseline
market reaction curve. Each of the "gures also plots the response of the market
reaction curve to a 50% positive or negative shock to each of the explanatory
"ve factors.

As can be seen in Fig. 6a, a 50% increase the average volume traded within
a price-duration (VOLUME) boosts expected depth and pushes the market

R.F. Engle, J. Lange / Journal of Financial Markets 4 (2001) 113}142 137



Fig. 5. Average market reaction curve for FNM (Fannie Mae), Aug.}Dec. 1997.

c
Fig. 6. (a) The sensitivity of the FNM conditional market reaction curve to VOLUME. (b) The
sensitivity of the FNM conditional market reaction curve to NUMBER. (c) The sensitivity of the
FNM conditional market reaction curve to EPTIME. (d) The sensitivity of the FNM conditional
market reaction curve to PTIME}ERR. (e) The sensitivity of the FNM conditional market reaction
curve to SPREAD.

reaction curve to the right, all else equal. Similarly, a decrease in VOLUME
pulls the curve left.

Charts 6b}d reveal that shocks to NUMBER, EPTIME, and PTIME}ERR
also shift the market reaction curve in a manner consistent with the original
"ndings. Although several of the simulated response curves are somewhat
distorted and non-linear, the overall positioning of the curves tends to reinforce
our earlier qualitative assessments of Eq. 2. Beyond describing the depth of the
market at a speci"c price change, these simulations represent estimates of
market depth, conditional on various aspects of trading behavior, across a con-
tinuum of feasible price movements.

Fig. 6e, which displays the sensitivity of the conditional market reaction curve
to changes in the bid}ask spread, is far less informative than then the earlier
"gures. The total impact of a shock to the bid}ask spread includes the direct
in#uence of SPREAD in Eq. (2), plus the indirect in#uence of SPREAD on
EPTIME in Eq. (1). These two e!ects should work in the same direction, with
greater values of SPREAD lowering expected VNET. However, the indirect
impact is relatively small, and for Fannie Mae, the direct impact is statistically
insigni"cant and inconsistently signed, as indicated by the coe$cient on
SPREAD in Table 8. This results in the ill-shaped curves above. Looking back
at Table 6, SPREAD is the least signi"cant explanatory variable in the model
across the entire group of stocks. This may re#ect the incompleteness of the
bid}ask spread as a measure of liquidity, particularly when studying the depth of
the market for larger price deviations.
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7. Conclusions

NYSE transaction and quote data are used to identify, measure, and model
intraday variations in the market depth of individual stocks. Our models for the
length of a price-duration (PTIME) and the net directional volume traded
within a price-duration (VNET) are estimated over two distinct time
periods, producing roughly similar parameter estimates. The relative stability
of the relationship between quote revisions and trading behavior suggests
that our price-duration based microstructure approach may indeed touch upon
some of the fundamental determinants of equity market liquidity and
volatility.

The empirical analysis explores the depth of "nancial markets, which to this
point has been di$cult to quantify. By de"ning price-durations as the time
between substantial adjustments in the midpoint of the quotes, a measure of the
one-sided trading behind price movements can be obtained. With this new
statistic, VNET, we are able to estimate the shape of the market reaction curve,
both ex ante and ex post. Our models of VNET reveal that the realized depth of
the market varies according to internal trading conditions. In general, the
market traits associated with a higher likelihood of price adjustment following
a given amount of one-sided volume (small VNET) are similar to those corre-
sponding to low liquidity as represented by tightness (wide bid}ask spread) in
earlier studies. This result is important in that it uni"es our de"nition of depth
with more traditional views of liquidity.

The models propose some strategies of how to trade large volume at the least
cost. First, it may seem obvious that the greater the overall trading volume, the
more of a nominal imbalance will be accepted by the market. However, the
percentage imbalance between buys and sells su$cient to move prices declines
with the total number of shares traded. The number of transactions per duration
also appears to reduce the depth of the market. This supports the notion that
market thickness is generally a consequence of informed traders #ooding the
market after a semi-private news event.

The empirical models "nd that movements in VNET are negatively correlated
with movements in the bid}ask spread. Along with providing evidence that the
new statistic is a valid measure of liquidity, this relationship adds another
trading strategy component, albeit an obvious one: when the market is tight it
will also lack depth. In addition, the positive impact of the expected duration
length on expected VNET suggests that when the market is volatile it will o!er
less depth. Finally, unanticipated shocks to the length of a price-durations,
represented by PTIME}ERR, also increase realized depth. With respect to large
volume trading strategies, this result carries the implication that patience may
greatly reduce transaction costs. These results carry the implication that trading
behavior may play a signi"cant role in shaping and predicting the intraday
liquidity of the stock market.
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